Dual impact of global urban overheating on mortality (2025)

References

  1. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results (UN DESA/POP/2022/TR/NO.3, 2022).

  2. Kephart, J. L. et al. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med. 28, 1700–1705 (2022).

    Article CAS Google Scholar

  3. Santamouris, M., Cartalis, C., Synnefa, A. & Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings – a review. Energy Build. 98, 119–124 (2015).

    Article Google Scholar

  4. Tong, S., Prior, J., McGregor, G., Shi, X. & Kinney, P. Urban heat: an increasing threat to global health. Br. Med. J. 375, n2467 (2021).

    Article Google Scholar

  5. Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

    Article Google Scholar

  6. Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    Google Scholar

  7. Burnside, W. R. et al. Human macroecology: linking pattern and process in big-picture human ecology. Biol. Rev. 87, 194–208 (2012).

    Article Google Scholar

  8. Laaidi, K. et al. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Persp. 120, 254–259 (2012).

    Article Google Scholar

  9. Smargiassi, A. et al. Variation of daily warm season mortality as a function of micro-urban heat islands. J. Epidemiol. Community Health 63, 659–664 (2009).

    Article CAS Google Scholar

  10. Aghamohammadi, N., Ramakreshnan, L., Fong S. C. & Kumar, P. in Urban Overheating: Heat Mitigation and the Impact on Health (eds Aghamohammadi, N. & Santamouris, M.) 21–38 (Springer Nature, 2022).

  11. Davies, M., Steadman, P. & Oreszczyn, T. Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy 36, 4548–4551 (2008).

    Article Google Scholar

  12. Chakraborty, T., Hsu, A., Manya, D. & Sheriff, G. A spatially explicit surface urban heat island database for the United States: characterization, uncertainties, and possible applications. ISPRS J. Photogramm. 168, 74–88 (2020).

    Article Google Scholar

  13. Macintyre, H. L., Heaviside, C., Cai, X. & Phalkey, R. The winter urban heat island: impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environ. Int. 154, 106530 (2021).

    Article Google Scholar

  14. Zhu, D., Zhou, Q., Liu, M. & Bi, J. Non-optimum temperature-related mortality burden in China: addressing the dual influences of climate change and urban heat islands. Sci. Total Environ. 782, 146760 (2021).

    Article CAS Google Scholar

  15. Heaviside, C., Macintyre, H. & Vardoulakis, S. The urban heat island: implications for health in a changing environment. Curr. Environ. Health Rep. 4, 296–305 (2017).

    Article Google Scholar

  16. Li, X. et al. Urban heat island impacts on building energy consumption: a review of approaches and findings. Energy 174, 407–419 (2019).

    Article Google Scholar

  17. Hirano, Y. & Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 37, 371–383 (2012).

    Article Google Scholar

  18. Kolokotroni, M., Zhang, Y. & Watkins, R. The London heat island and building cooling design. Sol. Energy 81, 102–110 (2007).

    Article Google Scholar

  19. Huang, W. T. K. et al. Assessing the impact of urban heat islands on the risks and costs of temperature-related mortality. In EGU General Assembly 2023 EGU23-9892 (EGU, 2023).

  20. Macintyre, H. L., Heaviside, C., Cai, X. & Phalkey, R. Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate. Environ. Int. 154, 106606 (2021).

    Article Google Scholar

  21. Fan, Y. et al. Urban heat island reduces annual building energy consumption and temperature related mortality in severe cold region of China. Urban Clim. 45, 101262 (2022).

    Article Google Scholar

  22. Lowe, S. A. An energy and mortality impact assessment of the urban heat island in the US. Environ. Impact Asses. 56, 139–144 (2016).

    Article Google Scholar

  23. Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Annu. Rev. Publ. Health 21, 271–307 (2000).

    Article CAS Google Scholar

  24. Bakhtsiyarava, M. et al. Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities. Soc. Sci. Med. 317, 115526 (2023).

    Article Google Scholar

  25. Hu, K. et al. Modifying temperature-related cardiovascular mortality through green-blue space exposure. Environ. Sci. Ecotechnol. 20, 100408 (2024).

    Article CAS Google Scholar

  26. Saffari, M. et al. Thermal stress reduction in cool roof membranes using phase change materials (pcm). Energy Build. 158, 1097–1105 (2017).

    Article Google Scholar

  27. Imran, H. M., Kala, J., Ng, A. W. M. & Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 197, 393–405 (2018).

    Article Google Scholar

  28. Yang, J. & Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 57, 1309–1320 (2018).

    Article Google Scholar

  29. Krayenhoff, E. S. et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ. Res. Lett. 16, 053007 (2021).

    Article Google Scholar

  30. Wang, Z. H. Compound environmental impact of urban mitigation strategies: co-benefits, tradeoffs, and unintended consequence. Sustain. Cities Soc. 75, 103284 (2021).

    Article Google Scholar

  31. Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    Article Google Scholar

  32. Macintyre, H. L. & Heaviside, C. Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city. Environ. Int. 127, 430–441 (2019).

    Article CAS Google Scholar

  33. He, C., He, L., Zhang, Y., Kinney, L. P. & Ma, W. Potential impacts of cool and green roofs on temperature-related mortality in the Greater Boston region. Environ. Res. Lett. 15, 094042 (2020).

    Article Google Scholar

  34. Oke, T. R., Mills, G. & Voogt, J. Urban Climates (Cambridge Univ. Press, 2017).

  35. Massaro, E. et al. Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes. Nat. Commun. 14, 2903 (2023).

    Article CAS Google Scholar

  36. Tan, J. et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54, 75–84 (2010).

    Article Google Scholar

  37. Liu, Z. et al. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 3, 219 (2022).

    Article Google Scholar

  38. Zhang, H. et al. Unequal urban heat burdens impede climate justice and equity goals. Innovation 4, 100488 (2023).

  39. Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).

    Article Google Scholar

  40. Turner, V. K., Middel, A. & Vanos, J. K. Shade is an essential solution for hotter cities. Nature 619, 694–697 (2023).

    Article CAS Google Scholar

  41. Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew. Sust. Energy Rev. 26, 224–240 (2013).

    Article Google Scholar

  42. Rosso, F. et al. New cool concrete for building envelopes and urban paving: optics-energy and thermal assessment in dynamic conditions. Energy Build. 151, 381–392 (2017).

    Article Google Scholar

  43. Ramamurthy, P. et al. Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteorol. Clim. 53, 2114–2129 (2014).

    Article Google Scholar

  44. Estrada, F., Botzen, W. W. & Tol, R. S. A global economic assessment of city policies to reduce climate change impacts. Nat. Clim. Change 7, 403–406 (2017).

    Article Google Scholar

  45. Paschalis, A., Chakraborty, T., Fatichi, S., Meili, N. & Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2, e2020AV000303 (2021).

    Article Google Scholar

  46. Endreny, T. A. Strategically growing the urban forest will improve our world. Nat. Commun. 9, 1160 (2018).

    Article Google Scholar

  47. Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).

    Article Google Scholar

  48. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article Google Scholar

  49. Zhang, T. et al. A global dataset of daily near-surface air temperature at 1 km resolution over land (2003–2020). Earth Syst. Sci. Data 14, 5637–5649 (2022).

    Article Google Scholar

  50. Gatti, P. L. Probability Theory and Mathematical Statistics for Engineers (CRC Press, 2004).

  51. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article Google Scholar

  52. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article Google Scholar

  53. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article Google Scholar

  54. Chen, J. et al. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9, 202 (2022).

    Article Google Scholar

  55. Nirandjan, S., Koks, E. E., Ward, P. J. & Aerts, J. C. A spatially-explicit harmonized global dataset of critical infrastructure. Sci. Data 9, 150 (2022).

    Article Google Scholar

  56. Kummu, M., Taka, M. & Guillaume, J. H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).

    Article Google Scholar

  57. Dobson, J. E. LandScan: a global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 66, 849–857 (2000).

    Google Scholar

  58. Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells (National Center for Atmospheric Research, 2017).

  59. Krummenauer, L. et al. Global drivers of minimum mortality temperatures in cities. Sci. Total Environ. 695, 133560 (2019).

    Article CAS Google Scholar

  60. Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).

    Article Google Scholar

  61. Menashe, D. S. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018); https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf

  62. Gasparrini, A. et al. Small-area assessment of temperature-related mortality risks in England and Wales: a case time series analysis. Lancet Planet. Health 6, e557–e564 (2022).

    Article Google Scholar

  63. Achebak, H., Devolder, D., Ingole, V. & Ballester, B. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat. Commun. 11, 2457 (2020).

    Article CAS Google Scholar

  64. Huber, V. et al. Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming. Environ. Res. 186, 109447 (2020).

    Article CAS Google Scholar

  65. Lee, W. H. et al. An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five East-Asian countries. Sci. Rep. 7, 10207 (2017).

    Article Google Scholar

  66. Madanian, M. et al. The study of thermal pattern changes using Landsat-derived land surface temperature in the central part of Isfahan province. Sustain. Cities Soc. 39, 650–661 (2018).

    Article Google Scholar

  67. Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).

    Article CAS Google Scholar

  68. Imhoff, M. L., Zhang, P., Wolfe, E. R. & Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114, 504–513 (2010).

    Article Google Scholar

  69. Yao, R., Wang, L., Huang, X., Gong, W. & Xia, X. Greening in rural areas increases the surface urban heat island intensity. Geophys. Res. Lett. 46, 2204–2212 (2019).

    Article Google Scholar

  70. Anderson, B. G. & Bell, M. L. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20, 205–213 (2009).

    Article Google Scholar

  71. Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25, 781–789 (2014).

    Article Google Scholar

  72. Yin, Q., Wang, J., Ren, Z., Li, J. & Guo, Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun. 10, 4640 (2019).

    Article Google Scholar

  73. Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Article Google Scholar

  74. Rohde, R. et al. Berkeley Earth temperature averaging process. Geoinform. Geostatist. Overview 1, 20–100 (2013).

    Google Scholar

  75. Tewari, M. et al. Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett. 14, 034002 (2019).

    Article Google Scholar

  76. Synnefa, A., Dandou, A., Santamouris, M., Tombrou, M. & Soulakellis, N. On the use of cool materials as a heat island mitigation strategy. J. Appl. Meteorol. Clim. 47, 2846–2856 (2008).

    Article Google Scholar

  77. Zinzi, M. & Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 55, 66–76 (2012).

    Article Google Scholar

  78. Wang, J. et al. Significant effects of ecological context on urban trees’ cooling efficiency. ISPRS J. Photogramm. Remote Sens. 159, 78–89 (2020).

    Article Google Scholar

  79. Marando, F. et al. Urban heat island mitigation by green infrastructure in European functional urban areas. Sustain. Cities Soc. 77, 103564 (2022).

    Article Google Scholar

  80. Schwaab, J. et al. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 12, 6763 (2021).

    Article CAS Google Scholar

  81. Lobaccaro, G. & Acero, J. A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 14, 251–267 (2015).

    Article Google Scholar

  82. Jandaghian, Z. & Akbari, H. Increasing urban albedo to reduce heat-related mortality in Toronto and Montreal, Canada. Energy Build. 237, 110697 (2021).

    Article Google Scholar

  83. Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).

    Article CAS Google Scholar

  84. Venter, Z. S., Chakraborty, T. & Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, eabb9569 (2021).

    Article Google Scholar

  85. Zhao, L., Lee, X., Smith, B. R. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).

    Article CAS Google Scholar

  86. Jacobson, M. Z. & Hoeve, J. E. T. Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 25, 1028–1044 (2012).

    Article Google Scholar

  87. Virk, G. et al. Microclimatic effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy Build. 88, 214–228 (2015).

    Article Google Scholar

  88. Chen, J. & Gao, M. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992-2019 based on calibrated nighttime light data. Figshare https://doi.org/10.6084/m9.figshare.17004523.v1 (2021).

  89. Wang, S. et al. Wangshasha929/urban-heat: dual impact of global urban overheating on mortality. Zenodo https://doi.org/10.5281/zenodo.14869462 (2025).

Download references

Dual impact of global urban overheating on mortality (2025)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6295

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.