References
United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results (UN DESA/POP/2022/TR/NO.3, 2022).
Kephart, J. L. et al. City-level impact of extreme temperatures and mortality in Latin America. Nat. Med. 28, 1700–1705 (2022).
Santamouris, M., Cartalis, C., Synnefa, A. & Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings – a review. Energy Build. 98, 119–124 (2015).
Tong, S., Prior, J., McGregor, G., Shi, X. & Kinney, P. Urban heat: an increasing threat to global health. Br. Med. J. 375, n2467 (2021).
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).
Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).
Burnside, W. R. et al. Human macroecology: linking pattern and process in big-picture human ecology. Biol. Rev. 87, 194–208 (2012).
Laaidi, K. et al. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Persp. 120, 254–259 (2012).
Smargiassi, A. et al. Variation of daily warm season mortality as a function of micro-urban heat islands. J. Epidemiol. Community Health 63, 659–664 (2009).
Aghamohammadi, N., Ramakreshnan, L., Fong S. C. & Kumar, P. in Urban Overheating: Heat Mitigation and the Impact on Health (eds Aghamohammadi, N. & Santamouris, M.) 21–38 (Springer Nature, 2022).
Davies, M., Steadman, P. & Oreszczyn, T. Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy 36, 4548–4551 (2008).
Chakraborty, T., Hsu, A., Manya, D. & Sheriff, G. A spatially explicit surface urban heat island database for the United States: characterization, uncertainties, and possible applications. ISPRS J. Photogramm. 168, 74–88 (2020).
Macintyre, H. L., Heaviside, C., Cai, X. & Phalkey, R. The winter urban heat island: impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environ. Int. 154, 106530 (2021).
Zhu, D., Zhou, Q., Liu, M. & Bi, J. Non-optimum temperature-related mortality burden in China: addressing the dual influences of climate change and urban heat islands. Sci. Total Environ. 782, 146760 (2021).
Heaviside, C., Macintyre, H. & Vardoulakis, S. The urban heat island: implications for health in a changing environment. Curr. Environ. Health Rep. 4, 296–305 (2017).
Li, X. et al. Urban heat island impacts on building energy consumption: a review of approaches and findings. Energy 174, 407–419 (2019).
Hirano, Y. & Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 37, 371–383 (2012).
Kolokotroni, M., Zhang, Y. & Watkins, R. The London heat island and building cooling design. Sol. Energy 81, 102–110 (2007).
Huang, W. T. K. et al. Assessing the impact of urban heat islands on the risks and costs of temperature-related mortality. In EGU General Assembly 2023 EGU23-9892 (EGU, 2023).
Macintyre, H. L., Heaviside, C., Cai, X. & Phalkey, R. Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate. Environ. Int. 154, 106606 (2021).
Fan, Y. et al. Urban heat island reduces annual building energy consumption and temperature related mortality in severe cold region of China. Urban Clim. 45, 101262 (2022).
Lowe, S. A. An energy and mortality impact assessment of the urban heat island in the US. Environ. Impact Asses. 56, 139–144 (2016).
Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Annu. Rev. Publ. Health 21, 271–307 (2000).
Bakhtsiyarava, M. et al. Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities. Soc. Sci. Med. 317, 115526 (2023).
Hu, K. et al. Modifying temperature-related cardiovascular mortality through green-blue space exposure. Environ. Sci. Ecotechnol. 20, 100408 (2024).
Saffari, M. et al. Thermal stress reduction in cool roof membranes using phase change materials (pcm). Energy Build. 158, 1097–1105 (2017).
Imran, H. M., Kala, J., Ng, A. W. M. & Muthukumaran, S. Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod. 197, 393–405 (2018).
Yang, J. & Bou-Zeid, E. Should cities embrace their heat islands as shields from extreme cold? J. Appl. Meteorol. Climatol. 57, 1309–1320 (2018).
Krayenhoff, E. S. et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ. Res. Lett. 16, 053007 (2021).
Wang, Z. H. Compound environmental impact of urban mitigation strategies: co-benefits, tradeoffs, and unintended consequence. Sustain. Cities Soc. 75, 103284 (2021).
Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).
Macintyre, H. L. & Heaviside, C. Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city. Environ. Int. 127, 430–441 (2019).
He, C., He, L., Zhang, Y., Kinney, L. P. & Ma, W. Potential impacts of cool and green roofs on temperature-related mortality in the Greater Boston region. Environ. Res. Lett. 15, 094042 (2020).
Oke, T. R., Mills, G. & Voogt, J. Urban Climates (Cambridge Univ. Press, 2017).
Massaro, E. et al. Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes. Nat. Commun. 14, 2903 (2023).
Tan, J. et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 54, 75–84 (2010).
Liu, Z. et al. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 3, 219 (2022).
Zhang, H. et al. Unequal urban heat burdens impede climate justice and equity goals. Innovation 4, 100488 (2023).
Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).
Turner, V. K., Middel, A. & Vanos, J. K. Shade is an essential solution for hotter cities. Nature 619, 694–697 (2023).
Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew. Sust. Energy Rev. 26, 224–240 (2013).
Rosso, F. et al. New cool concrete for building envelopes and urban paving: optics-energy and thermal assessment in dynamic conditions. Energy Build. 151, 381–392 (2017).
Ramamurthy, P. et al. Influence of subfacet heterogeneity and material properties on the urban surface energy budget. J. Appl. Meteorol. Clim. 53, 2114–2129 (2014).
Estrada, F., Botzen, W. W. & Tol, R. S. A global economic assessment of city policies to reduce climate change impacts. Nat. Clim. Change 7, 403–406 (2017).
Paschalis, A., Chakraborty, T., Fatichi, S., Meili, N. & Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2, e2020AV000303 (2021).
Endreny, T. A. Strategically growing the urban forest will improve our world. Nat. Commun. 9, 1160 (2018).
Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15, 094044 (2020).
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).
Zhang, T. et al. A global dataset of daily near-surface air temperature at 1 km resolution over land (2003–2020). Earth Syst. Sci. Data 14, 5637–5649 (2022).
Gatti, P. L. Probability Theory and Mathematical Statistics for Engineers (CRC Press, 2004).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).
Chen, J. et al. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9, 202 (2022).
Nirandjan, S., Koks, E. E., Ward, P. J. & Aerts, J. C. A spatially-explicit harmonized global dataset of critical infrastructure. Sci. Data 9, 150 (2022).
Kummu, M., Taka, M. & Guillaume, J. H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 5, 180004 (2018).
Dobson, J. E. LandScan: a global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 66, 849–857 (2000).
Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells (National Center for Atmospheric Research, 2017).
Krummenauer, L. et al. Global drivers of minimum mortality temperatures in cities. Sci. Total Environ. 695, 133560 (2019).
Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).
Menashe, D. S. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018); https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
Gasparrini, A. et al. Small-area assessment of temperature-related mortality risks in England and Wales: a case time series analysis. Lancet Planet. Health 6, e557–e564 (2022).
Achebak, H., Devolder, D., Ingole, V. & Ballester, B. Reversal of the seasonality of temperature-attributable mortality from respiratory diseases in Spain. Nat. Commun. 11, 2457 (2020).
Huber, V. et al. Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming. Environ. Res. 186, 109447 (2020).
Lee, W. H. et al. An investigation on attributes of ambient temperature and diurnal temperature range on mortality in five East-Asian countries. Sci. Rep. 7, 10207 (2017).
Madanian, M. et al. The study of thermal pattern changes using Landsat-derived land surface temperature in the central part of Isfahan province. Sustain. Cities Soc. 39, 650–661 (2018).
Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).
Imhoff, M. L., Zhang, P., Wolfe, E. R. & Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 114, 504–513 (2010).
Yao, R., Wang, L., Huang, X., Gong, W. & Xia, X. Greening in rural areas increases the surface urban heat island intensity. Geophys. Res. Lett. 46, 2204–2212 (2019).
Anderson, B. G. & Bell, M. L. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20, 205–213 (2009).
Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25, 781–789 (2014).
Yin, Q., Wang, J., Ren, Z., Li, J. & Guo, Y. Mapping the increased minimum mortality temperatures in the context of global climate change. Nat. Commun. 10, 4640 (2019).
Buzan, J. R., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).
Rohde, R. et al. Berkeley Earth temperature averaging process. Geoinform. Geostatist. Overview 1, 20–100 (2013).
Tewari, M. et al. Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environ. Res. Lett. 14, 034002 (2019).
Synnefa, A., Dandou, A., Santamouris, M., Tombrou, M. & Soulakellis, N. On the use of cool materials as a heat island mitigation strategy. J. Appl. Meteorol. Clim. 47, 2846–2856 (2008).
Zinzi, M. & Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 55, 66–76 (2012).
Wang, J. et al. Significant effects of ecological context on urban trees’ cooling efficiency. ISPRS J. Photogramm. Remote Sens. 159, 78–89 (2020).
Marando, F. et al. Urban heat island mitigation by green infrastructure in European functional urban areas. Sustain. Cities Soc. 77, 103564 (2022).
Schwaab, J. et al. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 12, 6763 (2021).
Lobaccaro, G. & Acero, J. A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 14, 251–267 (2015).
Jandaghian, Z. & Akbari, H. Increasing urban albedo to reduce heat-related mortality in Toronto and Montreal, Canada. Energy Build. 237, 110697 (2021).
Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).
Venter, Z. S., Chakraborty, T. & Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 7, eabb9569 (2021).
Zhao, L., Lee, X., Smith, B. R. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).
Jacobson, M. Z. & Hoeve, J. E. T. Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 25, 1028–1044 (2012).
Virk, G. et al. Microclimatic effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy Build. 88, 214–228 (2015).
Chen, J. & Gao, M. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992-2019 based on calibrated nighttime light data. Figshare https://doi.org/10.6084/m9.figshare.17004523.v1 (2021).
Wang, S. et al. Wangshasha929/urban-heat: dual impact of global urban overheating on mortality. Zenodo https://doi.org/10.5281/zenodo.14869462 (2025).